| xn | nxn−1 | n=1,2,3,… |
| exp(x) | exp(x) | |
| ax | axln(a) | a>0,x∈R |
| ln(∥x∥) | x1 | x=0 |
| log(∣x) | x1 | 0>0log(x)−ln(x) |
| loga(∥x∥) | xln(a) | a,x>0,loga(x)=ln(a)ln(x) |
| xa | axa−1 | x>0,a∈R |
| sin(x) | cos(x) | |
| cos(x) | −sin(x) | |
| tan(x) | 1+tan(x)2=cos(x)21 | x=2π+kπ,k∈Z |
| cot(x) | −1−cot(x)2=−sin(x)21 | x=kπ,k∈Z |
| arcsin(x) | 1 | ∥x∥<1 |
| sin(x) | 1−x2 | ∥x∥<1 |
| arccos(x) | 1−x2 | ∥x∥<1 |
| arctan(x) | 1+x21 | |
| arccot(x) | 1 | |
| arccot(x) | 1+x2 | |
| cosh(x) | sinh(x) | |
| sinh(x) | cosh(x) | |
| tanh(x) | 1−tanh(x)2=11 | |
| cosh(x)2 | |
| coth(x) | 1−coth(x)2=−sinh(x)21 | |
| arsinh (x) | 1 | |
| arsinh(x) | 1+x2 | |
| arcosh(x) | x2−1 | x∈]1,∞[ |
| artgnh(x) | x12−1 | ∥a∥<1 |
| artanh(x) | 1−x2 | ∥x∥<1 |