Übersicht Stammfunktionen und Ableitungen

f(x)f(x)f(x)f^{\prime}(x)Bemerkungen
xnx^nnxn1n x^{n-1}n=1,2,3,n=1,2,3, \ldots
exp(x)\exp (x)exp(x)\exp (x)
axa^xaxln(a)a^x \ln (a)a>0,xRa>0, x \in \mathbb{R}
ln(x)\ln (\|x\|)1x\frac{1}{x}x0x \neq 0
log(x)\log (\mid x)x1\begin{array}{l}x \\1 \\\end{array}0>0log(x)ln(x)0>0 \log (x)-\ln (x)
loga(x)\log _a(\|x\|)xln(a)\overline{x \ln (a)}a,x>0,loga(x)=ln(x)ln(a)a, x>0, \log _a(x)=\frac{\ln (x)}{\ln (a)}
xax^aaxa1a x^{a-1}x>0,aRx>0, a \in \mathbb{R}
sin(x)\sin (x)cos(x)\cos (x)
cos(x)\cos (x)sin(x)-\sin (x)
tan(x)\tan (x)1+tan(x)2=1cos(x)21+\tan (x)^2=\frac{1}{\cos (x)^2}xπ2+kπ,kZx \neq \frac{\pi}{2}+k \pi, k \in \mathbf{Z}
cot(x)\cot (x)1cot(x)2=1sin(x)2-1-\cot (x)^2=-\frac{1}{\sin (x)^2}xkπ,kZx \neq k \pi, k \in \mathbf{Z}
arcsin(x)\arcsin (x)1x<1\|x\|<1
sin(x)\sin (x)1x2\sqrt{1-x^2}x<1\|x\|<1
arccos(x)\arccos (x)1x2\sqrt{1-x^2}x<1\|x\|<1
arctan(x)\arctan (x)11+x2\frac{1}{1+x^2}
arccot(x)\text{arccot}(x)1
arccot(x)\text{arccot}(x)1+x2\overline{1+x^2}
cosh(x)\cosh (x)sinh(x)\sinh (x)
sinh(x)\sinh (x)cosh(x)\cosh (x)
tanh(x)\tanh (x)1tanh(x)2=111-\tanh (x)^2=\frac{1}{1}
cosh(x)2\overline{\cosh (x)^2}
coth(x)\text{coth}(x)1coth(x)2=1sinh(x)21-\text{coth}(x)^2=-\frac{1}{\sinh (x)^2}
arsinh (x)(x)1
arsinh(x)\text{arsinh}(x)1+x2\sqrt{1+x^2}
arcosh(x)\text{arcosh}(x)x21\overline{\sqrt{x^2-1}}x]1,[x \in] 1, \infty[
artgnh(x)\text{artgnh}(x)x121\sqrt{x_1^2-1}a<1\|a\|<1
artanh(x)\text{artanh}(x)1x2\overline{1-x^2}x<1\|x\|<1

Command Palette

Search for a command to run...