Übersicht Stammfunktionen und Ableitungen
Bemerkungen | ||
---|---|---|
1 | ||
1 | ||
arsinh | 1 | |
f(x) | f′(x) | Bemerkungen |
---|---|---|
xn | nxn−1 | n=1,2,3,… |
exp(x) | exp(x) | |
ax | axln(a) | a>0,x∈R |
ln(∥x∥) | x1 | x=0 |
log(∣x) | x1 | 0>0log(x)−ln(x) |
loga(∥x∥) | xln(a) | a,x>0,loga(x)=ln(a)ln(x) |
xa | axa−1 | x>0,a∈R |
sin(x) | cos(x) | |
cos(x) | −sin(x) | |
tan(x) | 1+tan(x)2=cos(x)21 | x=2π+kπ,k∈Z |
cot(x) | −1−cot(x)2=−sin(x)21 | x=kπ,k∈Z |
arcsin(x) | 1 | ∥x∥<1 |
sin(x) | 1−x2 | ∥x∥<1 |
arccos(x) | 1−x2 | ∥x∥<1 |
arctan(x) | 1+x21 | |
arccot(x) | 1 | |
arccot(x) | 1+x2 | |
cosh(x) | sinh(x) | |
sinh(x) | cosh(x) | |
tanh(x) | 1−tanh(x)2=11 | |
cosh(x)2 | ||
coth(x) | 1−coth(x)2=−sinh(x)21 | |
arsinh (x) | 1 | |
arsinh(x) | 1+x2 | |
arcosh(x) | x2−1 | x∈]1,∞[ |
artgnh(x) | x12−1 | ∥a∥<1 |
artanh(x) | 1−x2 | ∥x∥<1 |
Search for a command to run...